\$EPA

Quantitative and Qualitative Environmental Surveillance of SARS-CoV-2 in Ohio

Nichole Brinkman, PhD

US Environmental Protection Agency

Office of Research and Development

August 11, 2021

The views expressed in this presentation are those of the author(s) and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency. Any mention of trade names or commercial products does not constitute EPA endorsement or recommendation for use.

Set EPA

Research Team and Partners

EPA/ORD **Ohio Water Resources Center** Utilities Zuzana Bohrerova **Metropolitan Sewer District of Greater Cincinnati** Maitreyi Nagarkar **Ohio Department of Health Robin Schaefer** Chloe Hart **Rebecca** Fugitt **City of Dayton Ohio EPA Emily Wheaton** Chris Clark. Walter Schroder **Brian Hall City of Marion** Scott Keely Tiffani Kavalec **Steve Morris** Michael Jahne University Labs **City of Portsmouth** Eunice Varughese **Ohio State University** Tommy Stewart University of Toledo **Montgomery County** Jay Garland Kent State University lim Davis **Brian Morris** University of Akron **City of Hamilton** Ana Braam **Bowling Green State University** Mark Smith **Commercial Lab Barry Wiechman City of Springfield** LuminUltra Jeff Yinger Sarah Okrum **Private Lab**

Chris Griffith

Hamilton County Public Health Department

Battelle

Set EPA

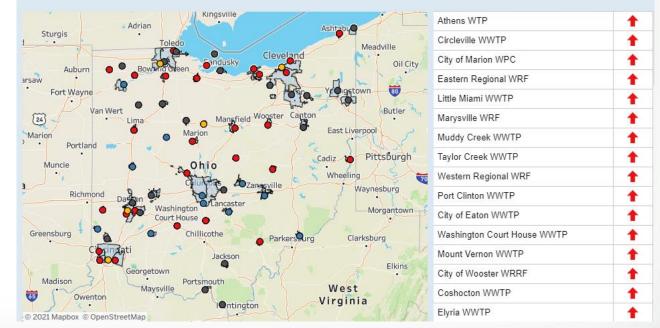
Ohio Wastewater Monitoring Network (OWMN)

Statewide Network

- Started July 2020
- Coordinated by Ohio Water Resources Center at OSU
- Leveraged expertise and resources
- 67 utilities, twice a week
- 9 labs (university, commercial, private, government)
- Dashboard with results updated daily

• Goal

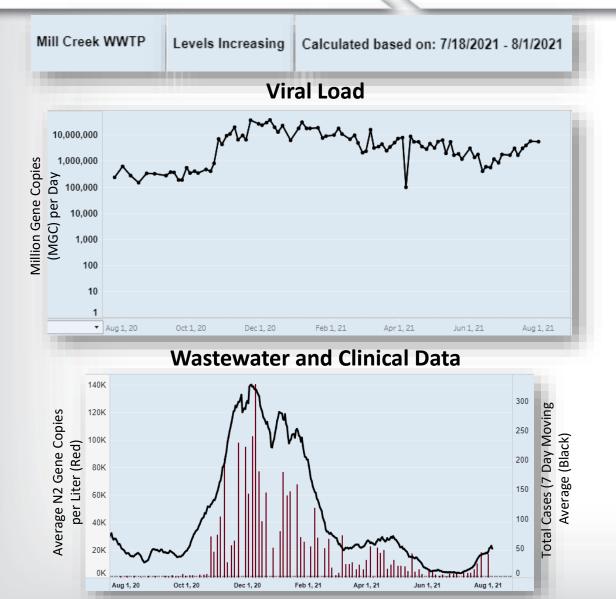
- Monitor trend of SARS-CoV-2 RNA in sewersheds
- Screen for presence of SARS-CoV-2 variants of concern/interest (VOC/VOI) by sequencing and RT-ddPCR


Ohio Department of Health

Coronavirus (COVID-19)

COVID-19 Dashboard

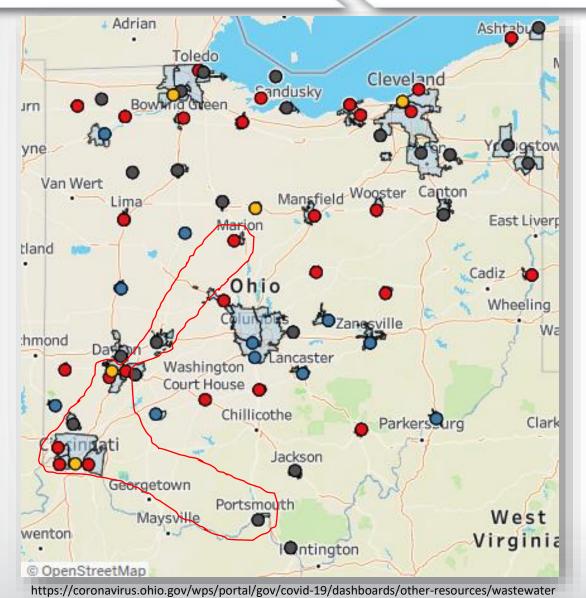
Ohio Coronavirus Wastewater Monitoring Network



Legend: Red arrow ↑= substantial increase (>100%), Yellow arrow > = increase (50% to 100%), Gray arrow ↔ = steady (-49% to 49%), Blue arrow ๖ = decrease (<=-50%) [as of Aug 09, 2021] https://coronavirus.ohio.gov/wps/portal/gov/covid-19/dashboards/other-resources/wastewater

Set EPA

OWMN Dashboard


• Application

- The focus is on <u>trends or significant</u> <u>changes</u> in the number of viral gene copies detected at each site
- Action is taken when at least 3 samples show a sustained increase of at least 10fold (1 log)

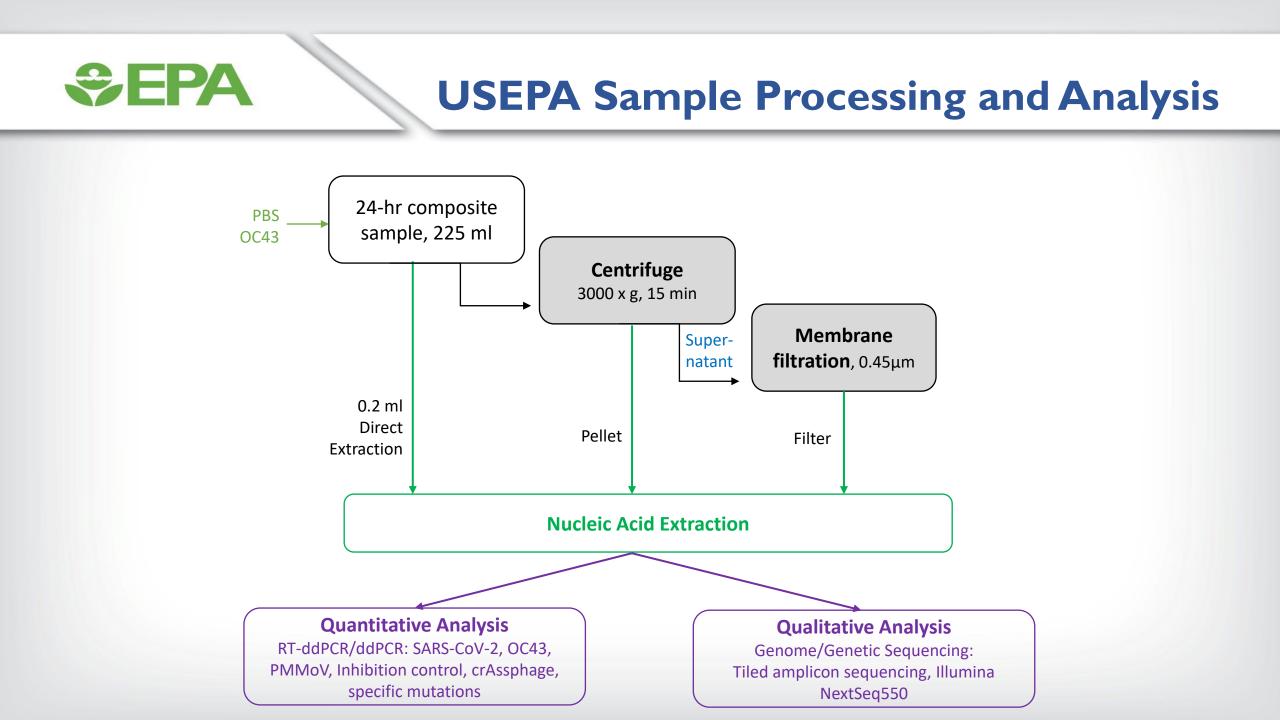
Accomplishments

- Statewide network represents wastewater flow from nearly 5 million residents
- I year of weekly data collected
- Provided nearly 500 warnings to local health communities

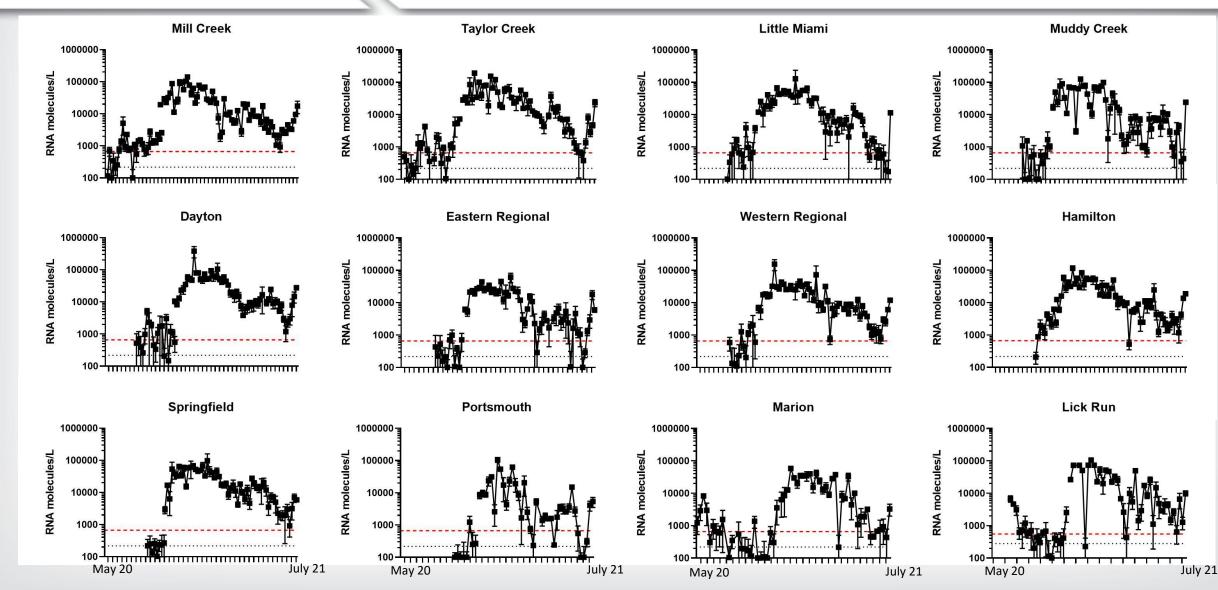
US EPA Support to OWMN

EPA

Monitoring 12 sites


- II sewersheds
- l subsewershed
- l-2x weekly
- I2-I4 months of monitoring

Quantitative data


• RT-ddPCR to assess community viral load and temporal trends

Qualitative data

- SARS-CoV-2 sequencing (full genome and spike gene) to screen for variants of concern (VOC) in communities
- Interlab data comparisons

Wastewater SARS-CoV-2 RNA Trends: May 2020-July 2021

EPA

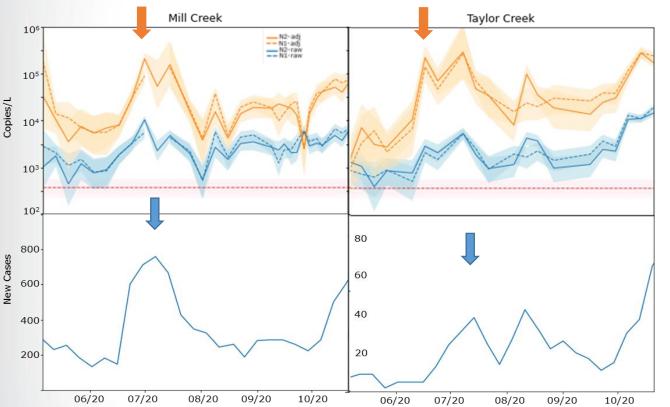
€PA

Factors that influence the relationship between wastewater and clinical data

Factor	Factor Details	Data Parameters	
Fecal shedding	Load, duration	Variable, up to 10 ⁷ copies/g	
Fate and transport of viral particle	Decay during conveyance	Decay rate	
Sewershed Characteristics	Physical data	Flow, pH, temperature, TSS	
Sampling Scheme	Frequency Type	Daily, weekly Grab, 24-hour flow-weighted composite	
RNA Measurement	Concentration method Extraction method Processing recovery efficiency Analysis method Inhibition	PEG, HA filter, concentrating pipet Silica-column kits, magnetic bead kits, TRIzol OC43, BCoV, MHV RT-qPCR, RT-ddPCR Control RNA	
Human Contribution	Fecal indicator organisms	Pepper mild mottle virus (PMMoV) crAssphage HF183	
Health data	Point estimates from public health departments	Sewershed case counts	

Case Study of Sewersheds

EPA


Parameter	Mill Creek	Taylor Creek
Population size	488,000	34,000
Mean MGD	93.17	2.79
MGD range	55.12-350.31	2.11-6.87
% Combined sewers	40	0
% Industrial flow	5	0
pH range	6.04-8.86	6.4-7.38
Mean TSS (mg/L)	247.87	340.96
TSS range	90-640	180-700

Do sewersheds with stormwater/industrial intrusion need to incorporate additional data parameters to understand relationship between wastewater and clinical case data?

⇒EPA


Wastewater RNA and Case Trend Data

May – October 2020

- NI and N2 (raw and OC43-adjusted) concentrations were highly correlated (r = 0.87, BF₁₀ >100)
- Raw and OC43-adjusted N1/N2 concentrations were strongly correlated (r = 0.64, BF₁₀ > 100)
- Peak clinical cases: Mill Creek (7/27), Taylor Creek (8/3)
- Wastewater RNA peaked 1-2 weeks prior to peak in reported clinical data

Fecal Indicators, Flow and TSS

€PA

		Mill Creek		Taylor Creek	
		Pearson's r	BF_{10}	Pearson's r	BF_{10}
crAssphage	HF183	0.9	***	0842	***
crAssphage	PMMoV	0.562	*	0.291	
PMMoV	HF183	0.455		0.559	
Flow (MGD)	crAssphage	-0.3		-0.062	
Flow (MGD)	PMMoV	0.054		-0.291	
Flow (MGD)	HF183	-0.502		-0.341	
TSS (mg/L)	crAssphage	0.318		-0.141	
TSS (mg/L)	PMMoV	0.085		-0.053	
TSS (mg/L)	HF183	0.359		-0.244	

Nagarkar et al., submitted

Correlations of Wastewater and New Case Data

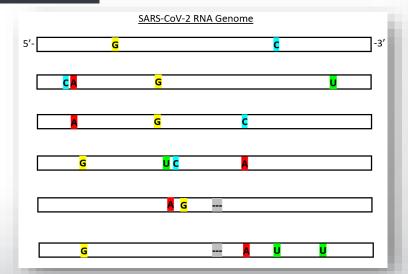
		N	1	N	2	
	Raw (cp/L) -	0.48	0.71 **	0.58 *	0.71 **	- 0.7
υ	Flow-adj (cp/day) -	0.56 *	0.7 **	0.69 ***	0.7 **	- 0.6
Unadjusted	N1/N2:CrAssphage (ratio) -	0.42	0.61 *	0.53 *	0.6 *	- 0.5
Unac	N1/N2:HF183 (ratio) -	0.48	0.62 *	0.6 **	0.61 *	0.5
	N1/N2:PMMoV (ratio) -	0.35	0.63 *	0.42	0.61 *	- 0.4
	Raw (cp/L) -	0.63 **	0.51	0.68 ***	0.5	- 0.3
ted	Flow-adj (cp/day)-	0.58 **	0.5	0.64 ***	0.49	
OC43-adjusted	N1/N2:CrAssphage (ratio)-	0.59 **	0.44	0.66 ***	0.43	- 0.2
0C43	N1/N2:HF183 (ratio)-	0.59 **	0.44	0.67 ***	0.44	- 0.1
	N1/N2:PMMoV (ratio)-	0.64 ***	0.53	0.7 ***	0.52	- 0.0
		Mill Creek	Taylor Creek	Mill Creek	Taylor Creek	

* = Bayes Factor (BF)₁₀ > 10; ** = BF₁₀ > 30; *** = BF₁₀ > 100

€PA

Nagarkar et al., submitted

Variants of Concern (VOC) in Wastewater



D 100% not detected Mutation of Mutation of Interest Concern Interest

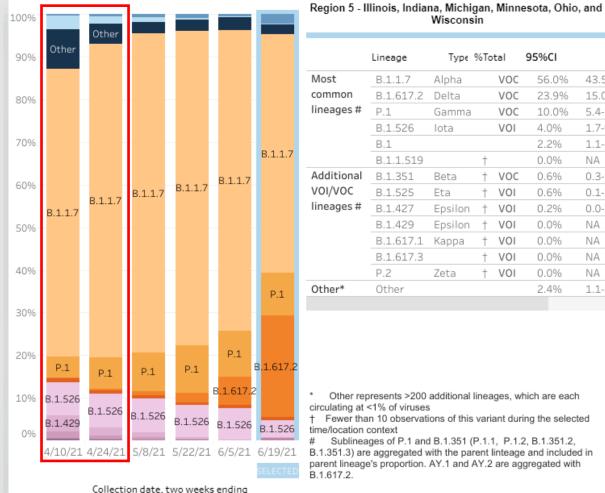
- Wastewater contains a mixture of variant genomes from human populations
- 2 approaches: RT-ddPCR mutation assays and tiled amplicon sequencing
- ODH is focused on key mutations in spike gene

EPA

 Results may be used by ODH to direct resources for clinical sequencing

RT-ddPCR Mutation Assays

RT-ddPCR was used to monitor signatures of B.1.1.7 (Alpha) by detecting Spike: DEL69/70 and 501Y

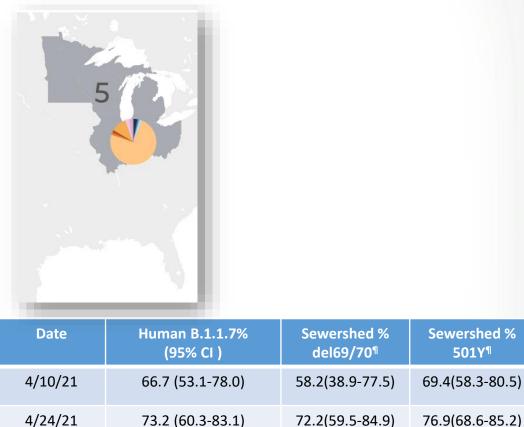


RNA sequences with deletions of nucleotides that result in absence of spike aa 69-70 increase over time

EPA

RNA sequences with nucleotides that change spike aa 501 increase over time

US Region 5 Distribution of **B.I.I.7**

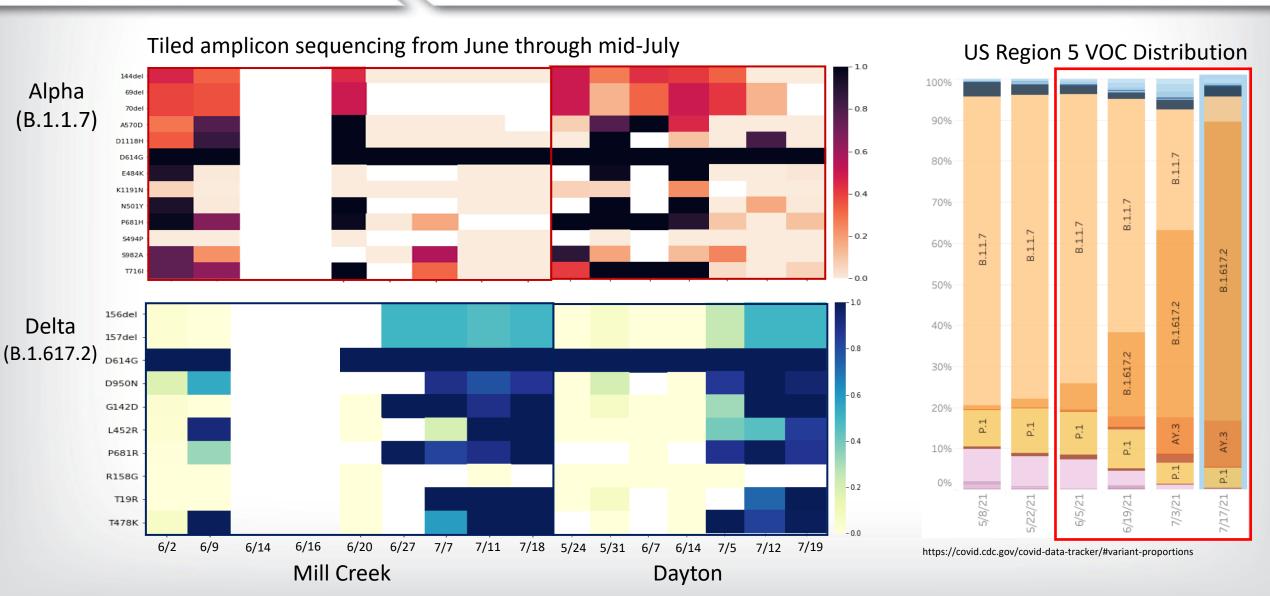

EPA

		WISCONS	m			
	Lineage	Туре	96To	+=1	95%CI	
	Lineage	Type	2010		337001	
Most	B.1.1.7	Alpha		VOC	56.0%	43.5
common	B.1.617.2	Delta		VOC	23.9%	15.0
lineages #	P.1	Gamma		VOC	10.0%	5.4-1
	B.1.526	lota		VOI	4.0%	1.7-S
	B.1				2.2%	1.1-4
	B.1.1.519		+		0.0%	NA
Additional	B.1.351	Beta	+	VOC	0.6%	0.3-1
VOI/VOC	B.1.525	Eta	+	VOI	0.6%	0.1-3
lineages #	B.1.427	Epsilon	+	VOI	0.2%	0.0-2
	B.1.429	Epsilon	†	VOI	0.0%	NA
	B.1.617.1	Карра	+	VOI	0.0%	NA
	B.1.617.3		+	VOI	0.0%	NA
	P.2	Zeta	+	VOI	0.0%	NA
Other*	Other				2.4%	1.1-5

Other represents >200 additional lineages, which are each

† Fewer than 10 observations of this variant during the selected

Sublineages of P.1 and B.1.351 (P.1.1, P.1.2, B.1.351.2, B.1.351.3) are aggregated with the parent linteage and included in parent lineage's proportion. AY.1 and AY.2 are aggregated with



[¶]average of 10 Ohio sewersheds during sample dates April 11,12 and April 25,26 April 4 and 5: 69/70del 30.3(7.8-52.8); 501Y 33.5(13.5-53.5)

https://covid.cdc.gov/covid-data-tracker/#variant-proportions

⇒EPA

Alpha (B.I.I.7) and Delta (B.I.617.2) Signatures in Wastewater

Summary and Conclusions

- Wastewater sampling has enabled large-scale monitoring of SARS-CoV-2 dynamics and has successfully enabled the Ohio Health Department to notify local communities when interventions are needed
- Understanding the relationship between 2 imperfect data sets is complex

Sepa

- SARS-CoV-2 RNA concentrations adjusted to account for recovery efficiency and human fecal input increased correlation with new case data in a large sewershed with stormwater and industrial intrusion, but not in a small sewershed with no outside intrusion
- ddPCR mutation assays show that the ratio of the 69/70 deletion and N501Y alternative allele (associated with Alpha variant) increasing over time and corresponds with increase in B.I.I.7 proportion of clinical data in US Region 5
- Sequencing confirms presence of amino acid changes associated with Alpha and Delta variants in wastewater samples and is consistent with proportion of clinical data in US Region 5